Search results for "Scatter matrix"
showing 10 items of 14 documents
Spectral density of the correlation matrix of factor models: a random matrix theory approach.
2005
We studied the eigenvalue spectral density of the correlation matrix of factor models of multivariate time series. By making use of the random matrix theory, we analytically quantified the effect of statistical uncertainty on the spectral density due to the finiteness of the sample. We considered a broad range of models, ranging from one-factor models to hierarchical multifactor models.
On the Computation of Symmetrized M-Estimators of Scatter
2016
This paper focuses on the computational aspects of symmetrized Mestimators of scatter, i.e. the multivariate M-estimators of scatter computed on the pairwise differences of the data. Such estimators do not require a location estimate, and more importantly, they possess the important block and joint independence properties. These properties are needed, for example, when solving the independent component analysis problem. Classical and recently developed algorithms for computing the M-estimators and the symmetrized M-estimators are discussed. The effect of parallelization is considered as well as new computational approach based on using only a subset of pairwise differences. Efficiencies and…
Image Recognition through Incremental Discriminative Common Vectors
2010
An incremental approach to the discriminative common vector (DCV) method for image recognition is presented. Two different but equivalent ways of computing both common vectors and corresponding subspace projections have been considered in the particular context in which new training data becomes available and learned subspaces may need continuous updating. The two algorithms are based on either scatter matrix eigendecomposition or difference subspace orthonormalization as with the original DCV method. The proposed incremental methods keep the same good properties than the original one but with a dramatic decrease in computational burden when used in this kind of dynamic scenario. Extensive …
Sign and Rank Covariance Matrices: Statistical Properties and Application to Principal Components Analysis
2002
In this paper, the estimation of covariance matrices based on multivariate sign and rank vectors is discussed. Equivariance and robustness properties of the sign and rank covariance matrices are described. We show their use for the principal components analysis (PCA) problem. Limiting efficiencies of the estimation procedures for PCA are compared.
Asymptotic and bootstrap tests for subspace dimension
2022
Most linear dimension reduction methods proposed in the literature can be formulated using an appropriate pair of scatter matrices, see e.g. Ye and Weiss (2003), Tyler et al. (2009), Bura and Yang (2011), Liski et al. (2014) and Luo and Li (2016). The eigen-decomposition of one scatter matrix with respect to another is then often used to determine the dimension of the signal subspace and to separate signal and noise parts of the data. Three popular dimension reduction methods, namely principal component analysis (PCA), fourth order blind identification (FOBI) and sliced inverse regression (SIR) are considered in detail and the first two moments of subsets of the eigenvalues are used to test…
How to simulate normal data sets with the desired correlation structure
2010
The Cholesky decomposition is a widely used method to draw samples from multivariate normal distribution with non-singular covariance matrices. In this work we introduce a simple method by using singular value decomposition (SVD) to simulate multivariate normal data even if the covariance matrix is singular, which is often the case in chemometric problems. The covariance matrix can be specified by the user or can be generated by specifying a subset of the eigenvalues. The latter can be an advantage for simulating data sets with a particular latent structure. This can be useful for testing the performance of chemometric methods with data sets matching the theoretical conditions for their app…
On Mardia’s Tests of Multinormality
2004
Classical multivariate analysis is based on the assumption that the data come from a multivariate normal distribution. The tests of multinormality have therefore received very much attention. Several tests for assessing multinormality, among them Mardia’s popular multivariate skewness and kurtosis statistics, are based on standardized third and fourth moments. In Mardia’s construction of the affine invariant test statistics, the data vectors are first standardized using the sample mean vector and the sample covariance matrix. In this paper we investigate whether, in the test construction, it is advantageous to replace the regular sample mean vector and sample covariance matrix by their affi…
Sign and rank covariance matrices
2000
The robust estimation of multivariate location and shape is one of the most challenging problems in statistics and crucial in many application areas. The objective is to find highly efficient, robust, computable and affine equivariant location and covariance matrix estimates. In this paper, three different concepts of multivariate sign and rank are considered and their ability to carry information about the geometry of the underlying distribution (or data cloud) are discussed. New techniques for robust covariance matrix estimation based on different sign and rank concepts are proposed and algorithms for computing them outlined. In addition, new tools for evaluating the qualitative and quant…
The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies
2003
We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance, matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform …
Symmetrised M-estimators of multivariate scatter
2007
AbstractIn this paper we introduce a family of symmetrised M-estimators of multivariate scatter. These are defined to be M-estimators only computed on pairwise differences of the observed multivariate data. Symmetrised Huber's M-estimator and Dümbgen's estimator serve as our examples. The influence functions of the symmetrised M-functionals are derived and the limiting distributions of the estimators are discussed in the multivariate elliptical case to consider the robustness and efficiency properties of estimators. The symmetrised M-estimators have the important independence property; they can therefore be used to find the independent components in the independent component analysis (ICA).